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Abstract This paper is concerned with modeling, linearization technique, and displacement control strategies of
tap water driven muscle. Recently, industrial applications of McKibben type artificial muscle has been a significant
increase because it has advantages such as high flexibility, low cost, light weight, and high-power density. In
particular, tap water driven muscle possesses advantages of water hydraulic system and the muscle is promising to
apply to industrial machines that require high cleanliness. However, the muscle has strong asymmetric hysteresis
characteristics which are changed by a load applied to the muscle. Therefore, it is difficult to construct a precise
muscle model and to achieve higher displacement control. For these problems, this paper proposes a muscle model
that consists of a linear model and an asymmetric Bouc-Wen model, which enables a description of asymmetric
hysteresis characteristics having relatively simple structure. Constrained recursive least square (RLS) algorithm
then estimates parameters of the proposed model and inverse of the model is used as linearization technique. In
order to improve control performance, the authors employ model predictive control (MPC) with servo mechanism
based on obtained model. Moreover, adaptive mechanism is introduced (hereafter, AMPC) to enhance robustness
for change of load and reference. Comparing these approaches, experimental results showed that AMPC with
servo mechanism using linearization technique can improve control performance under different load conditions
and references.
Keywords: McKibben type artificial muscle, Tap water hydraulics, Model predictive tracking control, Constrained
recursive least square, Asymmetric Bouc-Wen model

1 Introduction

McKibben type artificial muscle is an outstanding actuator and has been applied to biorobotic, medical, and
industrial applications because it exhibits advantages including high flexibility, low cost, light weight, and high-
power density [1]. On the other hand, tap water driven systems, which use pure tap water as working fluid, have
advantages such as no risks of environmental pollution, easily disposable, readily available, and requiring no
power source [2][3]. Given the aforementioned aspects, McKibben type artificial muscle driven by tap water
(hereafter, tap water driven muscle) is promising to apply to mechanical systems that require high cleanliness
or support systems at home because the muscle has advantages of tap water driven and McKibben type artificial
muscle. However, the muscle has strong asymmetric hysteresis characteristics caused by nonlinear contraction
behavior and friction between components. In addition, its characteristics depend on load applied to the muscle.
Therefore, it is difficult to derive a model expressing its behavior and to design controller for high-performance
displacement control. Most of previous studies already propose robust or adaptive scheme such as the model
reference adaptive control [4], sliding mode control [5], and H∞ control [6] in order to solve the aforementioned
problems. Nevertheless, the control methods are designed based only on a linear model. Linearized models
potentially limit the operation point and control performance because the models ignore the effects of nonlinear
hysteresis. Therefore, control systems based only on the linear model of the artificial muscles cannot achieve
precise control. Furthermore, nonlinear control strategies are also used for displacement control of the muscle
[7][8]. However, in order to express nonlinearities, the control methods have a complex structure and require
information on the estimated objects and prior measurements to identify parameters of the model due to the
control methods designed based on the first-principles-model. Therefore, the nonlinear control strategies are
not suitable for application.
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In previous studies, some conventional nonlinear hysteresis models including Prandtl-Ishlinskii, Preisach
or Bouc-Wen model have been applied to the muscle [9]-[11]. These hysteresis models can express hysteresis
characteristics and do not need measure physical parameters. In particular, the Bouc-Wen model is the most
suitable for control of the other hysteresis models because this model has a relatively simple linear structure
when compared to those. Control system based on this model shows that control performance is improved
when compared to control systems based only on the linear model. However, its control system cannot achieve
high precision displacement control because, generally, Bouc-Wen model cannot express asymmetric hysteresis
characteristics. Therefore, to improve high control performance, a model that compensates such hysteresis
characteristics of the muscle and a control system based on its model are required.

In this study, the authors derive a model of tap-water driven muscle system using an asymmetric Bouc-Wen
model that is combined standard Bouc-Wen model with a polynomial function of displacement of the muscle
and estimate parameters of the model by recursive least squares (RLS) algorithm, which is an adaptive identi-
fication with robustness for measurement noise. The asymmetric Bouc-Wen model has already been applied to
a piezoelectric actuator, although the model has not ever been applied to the muscle including not only the tap
water driven muscle but also a pneumatic artificial muscle. The authors observe effectiveness of the asymmetric
Bouc-Wen model for the muscle [12]. Then, we apply model predictive control (MPC) with linearization tech-
nique using inverse of proposed model that consists of a linear model and the asymmetric Bouc-Wen model for
performance improvement. The MPC corresponds to optimal control and generates a control input to optimize
an evaluation function including a predicted state/output and input over a given finite future horizon with con-
straints (for e.g., input and state) at every control steps. Given the aforementioned aspects, the MPC is widely
used in various field such as aerospace and automotive industries[13] and is a very promising control method.
The control method depends significantly on precision of a mathematical model because the MPC utilizes it
to predict a future behavior. Therefore, we implement the proposed model combining the linear model with
the asymmetric Bouc-Wen model to obtain high control performance. However, it is not possible to apply the
MPC with multi coincidence points to the muscle system in a straightforward manner with a popular MPC
solver, such as CVXGEN, which generates the code to solve a convex programming problem [14] because the
model contains nonlinearities. In order to apply this solver, this paper proposes a linearization technique for the
muscle system by designing a proper input that compensates the effect of hysteresis characteristics by using the
inverse of the asymmetric Bouc-Wen model.

Additionally, to obtain high tracking performance, MPC with servo mechanism, whose evaluation function
is augmeted to include a discrete integrator, is introduced. Furthermore, this study introduces an adaptive model
predictive control (AMPC) that incorporate the MPC into RLS algorithm in order to compensate parameters
changing of the muscle when the load applied to the muscle is changed. However, in terms of application,
the generated control input may diverge if a few estimated parameters corresponding to the effect of hysteresis
converge to an extremely small value. Therefore, this study introduces constrained RLS algorithm to AMPC
based on preliminary identification to constrain the parameters estimation within a certain region. In order
to demonstrate the effectiveness of the AMPC with the servo mechanism, experiments are conducted and the
results are compared to the unique coincidence point AMPC that directly uses the model under two different
load conditions and references.
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Nomenclature

β , γ Hysteresis parameters that determine the
shape of the hysteresis

∆u(k) Change of valve input voltage

∆uc(k) Change of control input by MPC with
the servo mechanism

θ̂(k) Estimated parameter vector

l̂(k) Free response

l̂(k) Output of the model

ϕ(k) Regressor vector

θ Parameter space

θ0 Initial value of the estimated parameter
vector

Ai Hysteresis parameter that determines an
amplitude

ai, bi System parameters

C Constrained region in the parameter
space

g(·) Polynomial function

Hp Prediction horizon

Hu Control horizon

l(k) Displacement of the muscle

n Hysteresis parameter that determines
smoothness

P(k) Covariance matrix

Q Weight on the tracking error

Qs Weight on the integrator

R Weight on change of input

r(k) Reference trajectory

S(Hp) Step response

u(k) Valve input voltage

uc(k) Control input by MPC with the servo
mechanism

yhy(k) Virtual hysteresis variable

2 Modeling of tap water driven muscle and estimation of its parameter

2.1 Modeling of tap water driven muscle using asymmetric Bouc-Wen model

Several asymmetric Bouc-Wen models are already proposed for describing hysteresis of a plant. In this study,
we adopt asymmetric Bouc-Wen model proposed in [12] for simple structure. However, that asymmetric Bouc-
wen model is represented via differential equations and MPC approach cannot directly be applicable. Therefore,
the asymmetric Bouc-Wen model is disretized by applying forward difference approximation. In this study,
Eq.(1) which gives better fitness in preliminary identification was introduced. Eq.(1) shows the muscle model
that combines a linear model with the discretized asymmetric Bouc-Wen model

l(k) = a1l(k−1)+a2l(k−2)+b1u(k−1)+ yhy(k−1)+ yhy(k−2)

yhy(k− i) = Ai{l(k− i)− l(k−1− i)}−βi|l(k− i)− l(k−1− i)|yhy(k−1− i)

− γi{l(k− i)− l(k−1− i)}|yhy(k−1− i)|+ ciyhy(k−1− i)+g(l(k− i))

g(l(k− i)) =
n

∑
j=2

ξi jl j(k− i)

(1)

where k denotes time step and i = 1,2. Note that the proposed model possesses not only the muscle’s dynamics
but also proportional valve’s dynamics. The proposed model incorporates the linear model corresponding from
the first term to the third term and the asymmetric Bouc-Wen model with the fifth and sixth terms. Here, a stan-
dard Bouc-Wen model is expressd as Eq.(1) without g(l(k)) which is the polynomial function of displacement
of the muscle. The model (1) can express asymmetric hysteresis by choosing g(l(k)) as odd function.
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2.2 Linearization technique using the proposed model

The authors propose linearization technique for the proposed model to apply code generator, e.g. CVXGEN,
which quickly solves the convex programming problem with linear constraints.

The linearized plant is defined as follows:

l(k) = a1l(k−1)+a2l(k−2)+b1uc(k−1) (2)

where uc(k) is to be designed in Section 3.2. By substituting Eq.(2) into Eq.(1), we obtain the following
hysteresis cancellation input:

u(k) = uc(k)−
1
b1
(yhy(k)+ yhy(k−1)) (3)

By inputting Eq.(3), the system is linearized and we can apply CVXGEN to the muscle system.

2.3 Constrained RLS algorithm for the proposed model

Recursive least square algorithm corresponds to on-line identification algorithm and the parameter updating
law for RLS algorithm [15] is expressed as follows:

θ̂(k) = θ̂(k−1)+
P(k−1)ϕ(k−1)

1+ϕ T (k−1)P(k−1)ϕ(k−1)
{l(k)−ϕ T (k−1)θ̂(k−1)}

P(k−1) = P(k−2)− P(k−2)ϕ(k−1)ϕ T (k−1)P(k−2)
1+ϕ T (k−1)P(k−2)ϕ(k−1)

(4)

where ϕ(k) and θ̂(k) are defined as follows:

ϕ(k−1) =



l(k−1)
l(k−2)
u(k−1)

l(k−1)− l(k−2)
l(k−2)− l(k−3)

|l(k−1)− l(k−2)|yhy(k−2)
|l(k−2)− l(k−3)|yhy(k−3)
{l(k−1)− l(k−2)}|yhy(k−2)|
{l(k−2)− l(k−3)}|yhy(k−3)|

yhy(k−2)
yhy(k−3)
l2(k−1)
l2(k−2)
l3(k−1)
l3(k−2)



, θ̂(k) =



a1(k)
a2(k)
b1(k)
A1(k)
A2(k)
β1(k)
β2(k)
γ1(k)
γ2(k)
c1(k)
c2(k)
ξ21(k)
ξ22(k)
ξ31(k)
ξ32(k)


where n = 1 in Eq.(1) and the order of g(l(k)) is 3. In particular, we conduct parameter estimation assuming
that yhy(k) is the difference between displacement of the muscle and output of linear model, namely yhy(k) =
l(k)− [a1l(k−1)+a2l(k−2)+b1u(k−1)] because yhy(k) cannot be measured due to virtual variable [16] .

Here, b1 in hysteresis cancellation input (3) is unknown. b1 should be replaced with b̂1(k) which is an
estimated parameter of b1 at time k as

u(k) = uc(k)−
1

b̂1(k)
(yhy(k)+ yhy(k−1)) (5)
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to deal with hysteresis cancellation input. For application, we have to constrain parameter region to ensure
that b̂1(k) does not converge to around zero because the generated control input (5) may diverge if b̂1(k) in
denominator of hysteresis cancellation input converges to an extremely small value. Therefore, it is necessary
to introduce constrained RLS algorithm. Constrained RLS algorithm is run by the following algorithm [15].

Algorithm 1 Constrained RLS

Step 1: Set k = 0, θ̂(0), P(−1).
Step 2: Measure the elements of ϕ(k).
Step 3: Calculate Eq.(4).

if θ̂(k) ∈C then
Utilize it as estimated parameter at time k.

else
Transform the coordinate basis for the parameter sapce by defining the following

ρ = P−1/2(k−1)θ
and denote C̄ as the image of C under linear transformation P−1/2(k−1).
Orthogonally project the image, ρ̂(k), of θ̂(k) under P−1/2(k−1) onto the boundary of C̄ to yield
ρ̂ ′(k) where the following expression holds:

ρ̂(k) = P−1/2(k−1)θ̂(k)
Put

θ̂(k) = θ̂ ′(k) = P1/2(k−1)ρ̂ ′(k)
and utilize it as estimated parameter at time k.

end if
Step 4: set k← k+1 and go to Step 2.

Remark 1. The transformation ρ = P−1/2(k−1)θ yields the following:

V (k) =
[
θ̂(k)−θ0

]T
P−1(k−1)

[
θ̂(k)−θ0

]
(6)

= [ρ̂(k)−ρ0]
T [ρ̂(k)−ρ0] (7)

where

ρ0 = P−1/2(k−1)θ0 ∈ C̄ (8)

Given that ρ̂ ′(k) is an orthogonal projection of ρ̂(k) on C̄ and ρ0 ∈ C̄, the following inequality holds:

∥ρ̂ ′(k)−ρ0∥2 ≤ ∥ρ̂(k)−ρ0∥2 (9)

and hence[
θ̂ ′(k)−θ0

]T
P−1(k−1)

[
θ̂ ′(k)−θ0

]
≤
[
θ̂(k)−θ0

]T
P−1(k−1)

[
θ̂(k)−θ0

]
(10)

From the result, we observe that
[
θ̂(k)−θ0

]T
P(k−1)−1

[
θ̂(k)−θ0

]
corresponds to a non-increasing function

when θ̂(k) is projected on the constrained region C.

2.4 Experimental circuit and setup

Figures 1 and 2 show experimental circuit and setup, respectively. Table 1 shows circuit components.
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Fig. 1 Experimental circuit Fig. 2 Experimental setup

Table 1 Components of experimental circuit

Item Specifications

Proportional valves KFPV300-2-80, Koganei Corporation
Cv Value: 1.6, Range of input voltage: 0 to 10 [V]

Pressure sensor FP101, Yokogawa Electric Corporation
Range: 0 to 1 [MPa(G)]

Linear encoder DX-025, MUTOH Industries Ltd.
Resolution: 0.01 [mm]

PC Windows 7, Microsoft Corporation
CPU: 3.10 [GHz], RAM: 4.00 [GB]
Including MATLAB/Simulink and dSPACE 1103

Tap water driven muscle In-house custom-built muscle
Length: 400 [mm]

Tap water Average supply pressure: 0.25 [MPa(G)]

We conduct parameter estimation for the proposed model that consists of linear model and the asymmetric
Bouc-Wen model and conventional model that consists of linear model and standard Bouc-Wen model by using
constrained RLS algorithm. Note that standard Bouc-Wen model indicates Eq.(1) without g(l(k)). Figure 3
shows a part of the input corresponding to valve input voltage and output corresponding to displacement of the
muscle using parameter estimation. As seen in the figure, a sinusoidal wave with an amplitude of 3 [V], bias
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of 5 [V], and frequency of 0.1 [Hz] is given. In addition, the sampling period is 0.1[s] and the load applied to
the muscle corresponds to 44 [N]. The initial value of the covariance matrix P(−1) corresponds to a diagonal
matrix with a value of 103 for each element, and the initial estimated parameter vector θ̂(0) corresponds to zero.
Table 2 summarizes the constrained region of the parameters of the linear model in Eq.(1) that are obtained via
preliminary system identification experiments and the region is determined via the mean value and distribution
of each parameter.
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Fig. 3 Part of input (valve input voltage) and output (displacement of muscle) data for identification

Table 2 Constrained region of linear model in Eq.(1) obtained by preliminary system identification experiments

a1 a2 b1

Minimum value 1.208 -0.334 0.607

Maximum value 1.260 -0.278 1.184

Table 3 summarizes estimated parameters of the proposed model and conventional model. It is estimated
that the parameters almost converge in approximately 120 [s] although constrained RLS algorithm runs after
120 [s]. Figure 4 shows a comparison of the proposed model and the conventional model respectively by
substituting the estimated parameters shown in Table 3 into Eq.(1). As Fig.4 shows, it is evident that the
conventional model does not sufficiently express the measured displacement of the muscle while proposed
model gives close agreement with that. In addition, Fig.5 demonstrates comparison of hysteresis loop of the
proposed model and conventional model. From this Figure, we observe that the conventional model using
standard Bouc-Wen model does not compensate the asymmetric hysteresis loop while the proposed model
using the asymmetric Bouc-Wen model expresses the asymmetric hysteresis. Table 4 shows fitness between
predicted output of the model and experimental measurement data. As shown in the Table, proposed model
maintains that fitness between predicted output of the proposed model and experimental measurement data is
higher than 90 [%] over the simulated output. The results clarifies that proposed model that combines the linear
model the asymmetric Bouc-Wen model is valid for asymmetric hysteresis characteristics of the muscle and
constrained RLS algorithm appropriately estimates parameters of the proposed model.
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Table 3 Parameters of the proposed model and conventional model as estimated by RLS algorithm

Value
Parameter Proposed model Conventional model

(asymmetric Bouc-Wen model (standard Bouc-Wen model)

a1 1.260 1.260

a2 −0.288 −0.304

b1 0.607 0.607

A1 0.174 0.222

A2 0.145 −0.088

β1 −0.023 −0.684

β2 −0.027 0.333

γ1 −0.152 0.387

γ2 0.169 −0.098

c1 0.082 0.290

c2 0.049 0.156

ξ21 0.003 -

ξ22 −0.003 -

ξ31 −6.413×10−5 -

ξ32 −5.568×10−5 -
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Fig. 4 Comparison of the proposed model and conventional model in the experiment
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Fig. 5 Comparison of hysteresis loop of proposed model and conventional model for 0.1 [Hz] sinusoidal valve input
voltage in the experiment

Table 4 Control parameters of each control method for the displacement control

XXXXXXXXXXXModel
Prediction

1-step ahead 3-step ahead 5-step ahead Simulated output

Proposed model 99.6 [%] 98.3 [%] 96.8 [%] 93.6 [%]

Conventional model 99.5 [%] 97.4 [%] 93.9 [%] 81.9 [%]

3 Controller design for MPC

3.1 MPC with unique coincidence point

Model predictive control generates optimal input to make the predicted output coincide with reference trajectory
at k,k + 1, . . . ,k +Hp steps. Unique solution can be obtained by taking Hp = Hu. In particular, MPC with
unique coincidence point is simplest case and only has unique coincidence point at time k+HP. Additionally,
this control method can directly deal with nonlinear model because the control method derives unique solution
and does not require evaluation function. In this control method, designers firstly select a prediction horizon
Hp and then reference trajectory r(k) that adequately defines an output track reference from current output l(k)
to Hp steps ahead of the predicted output l̂(k+Hp|k) that is uniquely calculated by Eq.(11) as follows:

l̂(k+Hp|k) = l̂ f (k+Hp|k)+S(Hp)∆û(k) (11)

where (k1|k2) denotes predicted value at step k1 by calculating at step k2. Additionally, free response l̂(k+Hp|k)
and step response S(Hp) indicate that is obtained at the coincidence point when least input u(k−1) is maintained
during Hp steps and unit step response of the model at Hp step later, respectively. In addition, the change of
input is defined as follows:

∆u(k) = u(k)−u(k−1) (12)

Note that the control method assumes that the optimal input u(k) will only change at times k, and will remain
constant after that. Finally, the controller generates optimal change of input that causes the predicted output
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to coincide with the reference trajectory at k+Hp steps, namely r(k+Hp|k) = l̂(k+Hp|k). Thus, the optimal
change of input u(k) is obtained as follows:

∆u(k) =
r(k+Hp|k)− l̂ f (k+Hp|k)

S(Hp)
(13)

From the result, we obtain a unique solution even when the nonlinear model is adopted. Here, valve input
voltage u(k) is calculated by Eq.(14) :

u(k) =
1

1− z−1∆u(k) (14)

The algorithm iterates at each step.

3.2 MPC with servo mechanism

Model predictive control with a unique coincidence point was introduced in the previous section. In order to
improve control performance, we introduce MPC with multi coincidence points to achieve a higher control
performance. In general, MPC cannot generate optimal control input to make predicted output completely
coincide with reference trajectory at each step. Therefore, in MPC with multi coincidence points, the evaluation
function is introduced and control input corresponds to an optimizer of that function. The evaluation function
of MPC with the servo mechanism [17] is described as follows:

J(k) =
Hp

∑
i=1
|l̂(k+ i|k)− r(k+ i|k)|2Q(i)+

Hu−1

∑
i=0
|∆ûc(k+ i|k)|2R(i)+

Hp

∑
i=1
|xs(k+ i|k)|2Qc(i) (15)

where ∆ûc(k+ i|k) is defined as Eq.(16)

∆ûc(k+ i|k) = ûc(k+ i|k)− ûc(k+ i−1|k) (16)

The model derived by system identification or estimation generally does not possess a physical interpretation
of the state vector. Therefore, a non-minimum state space representation is introduced as follows:{

x(k+1) = Ax(k)+Bu(k)

l(k) =Cx(k)
(17)

where A, B, C, and x(k) are defined as:

A =

[
a1 a2

1 0

]
, B =

[
b1

0

]
, C =

[
1 0

]
, x(k) =

[
l(k)

l(k−1)

]
Discrete time integrator xs(k) is expressed as follows:

xs(k+1) = xs(k)+{r(k)− l(k)} (18)

Here, we provide the input constraint of input voltage of control valves that is represented by Eq.(19) and
∆uc(k) is derived by minimizing Eq.(15) subject to Eq.(19) as follows:

0≤ ûc(k+ i|k)−
1

b̂1(k)
(yhy(k)+ yhy(k−1))≤ 10, i = 0,1, · · · ,Hu−1 (19)

Here, valve input voltage u(k) is obtained by substituting control input uc(k) calculated by Eq.(20) into Eq.(5).

uc(k) =
1

1− z−1∆uc(k) (20)

The algorithm above iterates at each step.
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3.3 Adaptive MPC with servo mechanism

Model predictive control utilizes the mathematical model to compute future response. Therefore, it is obvious
that if the predictor has parameter error and/or parameters of the muscle are changed by the load, then MPC does
not work well and control performance is degraded. In order to solve the problem, we incorporate constrained
RLS algorithm into the predictor of MPC to compensate modeling error. Figures 6 and 7 show the schematic
block diagram of adaptive model predictive control (AMPC) which combines MPC with constrained RLS
algorithm with the servo mechanism using the hysteresis cancellation input and AMPC with unique coincidence
point. Note that MPC/AMPC with servo mechanism utilize proposed model as linearization technique and their
predictors are linear model expressed Eq.(2). In addition, MPC/AMPC with unique coincidence point directly
utilize proposed model as predictor and does not use linearization technique as shown in Fig.7.

Fig. 6 Schematic block diagram of the AMPC with servo mechanism using inverse of asymmetric Bouc-wen model

Fig. 7 Schematic block diagram of the AMPC with unique coincidence point
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4 Experiment

4.1 Experimental conditions

In this section, we conduct experiment to compare four control methods: MPC with unique coincidence point,
MPC with servo mechanism, AMPC with unique coincidence point, and AMPC with servo mechanism. The
sampling period is 0.1[s] and a reference is sinusoidal wave with an offset of 35 [mm], amplitude of 30 [mm],
and frequency of 0.1[Hz]. Experiments are conducted by circuit in Fig.1 and setup in Fig.2 applying parameters
estimated under loads corresponding to 44 [N] and 68 [N]. Tracking control performance in the steady state
response from 10 [s] to 40 [s] is evaluated by Eq.(21).

ē =
1

301

401

∑
k=101

|r(k)− l(k)| (21)

Table 5 Control parameters of each control method for the displacement control

Control
parameters

MPC with
unique coincidence

point

MPC with
servo mechanism

AMPC with
unique coincidence

point

AMPC with
servo mechanism

Hp 2 5 2 5

Hu - 5 - 5

Q - {5, 5, 5, 5, 5} - {5, 5, 5, 5, 5}

Qs - 2 - 2

R - 15 - 15

P(0) - -
diag{200 200 200 50 50 50 50 50 50 50 50

20 20 20 20}

4.2 Experiments of MPC with unique coincidence point and MPC with servo mechanism

Firstly, we conducted experiments to observe the control performance of MPC with unique coincidence point
and MPC with servo mechanism. Note that the experiments utilize fixed predictors, which are obtained by a
preliminary identification under 44 [N]. Figures 8 and 9 show experimental results of the tracking control with
MPC with unique coincidence point and MPC with servo mechanism under load of 44 [N] and prediction error
of predictor in each control method under load of 44 [N] from 10 to 40 [s], respectively. In addition, Figs.10
and 11 show experimental results of these controls for the load of 68 [N] from 10 to 40 [s], respectively.

It is obvious that MPC with servo mechanism has higher control performance than MPC with unique
coincidence point from Figs.8 and 10. Table 6 summarizes control performances of each control method under
two types of load. As Table 6 shows, MPC with servo mechanism improves control performance more than
0.94 [mm] when compared to MPC with unique coincidence point under both load conditions, even though
prediction error is almost same as shown in Figs.9 and 11. These results exhibit that it is valid for the muscle
system to take multi coincidence points and to include integrator in evaluation function. Moreover, predictor in
MPC with servo mechanism obtained almost same precision whereas its predictor used linear model. This result
implies that linearization technique works well for the muscle system. However, we observe that prediction
error has bias compared with case of load of 44 [N] as compared Figs.9 to 11. Control performance of MPC
with unique coincidence point was degraded by load change, while MPC with servo mechanism maintains its
control performance. This result indicates that integrator of MPC with servo mechanism works to eliminate
tracking error. Therefore, with aforementioned reason, MPC with servo mechanism is valid for load change of
the muscle.
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Fig. 8 Tracking performance of MPC with the servo mechanism and MPC with unique coincidence point under the load
corresponding to 44 [N]
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Fig. 9 Prediction error of predictor in MPC with servo mechanism and MPC with unique coincidence point from 10 to
40 [s] under the load corresponding to 44 [N]
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Fig. 10 Tracking performance of MPC with the servo mechanism and MPC with unique coincidence point under load
corresponding to 68 [N]
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Fig. 11 Prediction error of predictor in MPC with servo mechanism and MPC with unique coincidence point from 10 to
40 [s] under the load corresponding to 68 [N]
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Table 6 Control performance comparison of MPC with servo mechanism and MPC with unique coincidence point under
loads

PPPPPPPPPLoad
Method

MPC with the servo mechanism MPC with unique coincidence point

44 [N] 0.33 [mm] 1.27 [mm]

68 [N] 0.33 [mm] 2.25 [mm]

4.3 Experiments of the AMPC with unique coincidence point and AMPC with servo mecha-
nism

Next, we conducted experiments to observe control performances of AMPC with unique coincidence point and
AMPC with servo mechanism. Note that these experiments introduce constrained RLS algorithm in predictor
to compensate parameter error. Figures 12 and 13 show experimental results of the tracking control with AMPC
with unique coincidence point and AMPC with servo mechanism under load of 44 [N] and prediction error of
predictor in each control method under load of 44 [N] from 10 to 40 [s], respectively. In addition, Figs.14 and
15 show experimental results of these controls for the load of 68 [N] from 10 to 40 [s], respectively.

Table 7 summarizes these control performances and it is clear that AMPC with servo mechanism improves
control performance more than 0.79 [mm] when compared to AMPC with unique coincidence point and more
than 0.04 [mm] when compared to MPC with servo mechanism. As Table 7 demonstrates, AMPC with unique
coincidence point dramatically improves control performance when compared to MPC with unique coincidence
point. On the other hand, AMPC with servo mechanism barely improves control performance when compared
to MPC with servo mechanism, while prediction error is reduced. From these results, multi coincidence points
and integrator give a major effect on control performance under different loaded conditions.
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Fig. 12 Tracking performance of AMPC with the servo mechanism and AMPC with unique coincidence point under load
corresponding to 44 [N]
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Fig. 13 Prediction error of predictor in AMPC with servo mechanism and AMPC with unique coincidence point from 10
to 40 [s] under the load corresponding to 44 [N]
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Fig. 14 Tracking performance of AMPC with the servo mechanism and AMPC with unique coincidence point under load
corresponding to 68 [N]
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Fig. 15 Prediction error of predictor in AMPC with servo mechanism and AMPC with unique coincidence point from 10
to 40 [s] under the load corresponding to 68 [N]

Table 7 Control performance comparison of AMPC with servo mechanism and AMPC with unique coincidence point
under loads

PPPPPPPPPLoad
Method

AMPC with the servo mechanism AMPC with unique coincidence point

44 [N] 0.28 [mm] 1.07 [mm]

68 [N] 0.29 [mm] 1.40 [mm]

4.4 Experiments of the MPC and AMPC with servo mechanism for other reference trajectory

Finally, to show effectiveness of introduction of adaptive algorithm, we conducted experiments to observe
control performance of the MPC and AMPC with servo mechanism for different reference. Here, reference
is changed to sinusoidal wave with 0.2 [Hz] and same offset/amplitude as in Section 4.1. Re-tuned control
parameters are summarized in Table 8.

Note that experimental results show steady state response only from 10 to 40 [s]. Figures 16 and 17 show
experimental results of the tracking control with the MPC and AMPC with servo mechanism for changed
reference under load of 44 [N] and prediction error of predictor in each control method under load of 44 [N],
respectively. In addition, Figs.18 and 19 show experimental results of these controls for the load of 68 [N],
respectively.

As Figs.16 and 18 show, the AMPC with servo mechanism reduces tracking error when compared to that
of the MPC under each load condition. In addition, Table 9 summarizes control performance of each control
method. From the table, we observe that the AMPC with servo mechanism improves control performance
more than 0.13 [mm] when compared to that of the MPC under both load conditions. These findings are
yielded by reduction of prediction error as compared Figs.17 to 19. The reason why predictor in MPC with
servo mechanism yields larger prediction error is that asymmetric Bouc-Wen model cannot characterize the
frequency dependent hysteresis of the muscle. In fact, the proposed model has higher error as shown in Fig.20
that shows relationship among 5 steps ahead prediction on the proposed model, re-identified proposed model,
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and displacement of muscle when inputted sinusoidal wave with the amplitude of 2.5 [V], bias of 4.5 [V], and
frequency of 0.2 [Hz]. Therefore, the experiment results as shown in Figs.8 to 19 indicate that the AMPC
with servo mechanism has robustness for not only load change but also frequency change of reference and is
effective for the muscle.

Table 8 Control parameters of each control method for the displacement control

Control
parameters

MPC with
servo mechanism

AMPC with
servo mechanism

Hp 5

Hu 5

Q {5, 5, 5, 5, 5}

Qs 2

R 15

P(0) -
diag{1000 1000 1000

250 250 250 250 250 250 250 250
150 150 150 150}
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Fig. 16 Tracking performance of MPC and AMPC with the servo mechanism for changed reference from 10 to 40 [s]
under load corresponding to 44 [N]
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Fig. 17 Prediction error of predictor in MPC and AMPC with servo mechanism from 10 to 40 [s] under the load corre-
sponding to 44 [N]
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Fig. 18 Tracking performance of MPC and AMPC with the servo mechanism for changed reference from 10 to 40 [s]
under load corresponding to 68 [N]
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Fig. 19 Prediction error of predictor in MPC and AMPC with servo mechanism from 10 to 40 [s] under the load corre-
sponding to 68 [N]

Table 9 Control performance comparison of MPC and AMPC with servo mechanism for another reference under loads

PPPPPPPPPLoad
Method

AMPC with the servo mechanism MPC with the servo mechanism

44 [N] 0.67 [mm] 0.80 [mm]

68 [N] 0.68 [mm] 0.91 [mm]
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Fig. 20 Comparison of among 5 steps ahead prediction on the proposed model, re-identified proposed model, and dis-
placement of muscle when sinusoidal wave is applied with the amplitude of 2.5 [V], bias of 4.5 [V], and frequency
of 0.2 [Hz]

5 Conclusion

This paper discussed modeling and linearization technique based on the asymmetric Bouc-Wen model, and
two kinds of controller design for the tap water driven muscle system. The proposed model showed high fit-
ness relative to the measured output and could express asymmetric hysteresis characteristics of the muscle.
Subsequently, inverse of the asymmetric Bouc-Wen model was applied to linearize the muscle system. The
authors introduced model predictive control with servo mechanism using linearization technique for displace-
ment control of the muscle system. This control method improved control performance more than 0.84 [mm]
when compared to model predictive control with unique coincidence point. Additionally, we incorporated
constrained recursive least square algorithm to each control method to improve robustness for load changing
and to compensate parameter error. As a result, adaptive model predictive control with servo mechanism only
improved control performance by 0.05 [mm] when compared to that of model predictive control and adaptive
model predictive control with unique coincidence point improved control performance more than 0.79 [mm].
Finally, we changed reference to compare control performance of adaptive model predictive conrol with servo
mechanism to model predictive control with servo mechanism. This experiment showed that adaptive model
predictive control improved control performance more than 0.13 [mm] when compared to that of model predic-
tive control. From these results, this paper showed that adaptive model predictive control with servo mechanism
using linearization technique based on asymmetric Bouc-Wen model achieved higher control performance and
obtained robustness for not only load change but also frequency change for reference.

However, we tuned control parameters of MPC by trial and error because relationship between control pa-
rameters and closed loop properties is not yet clear. In the future, tuning method for MPC with servo mechanism
will be discussed to the muscle system.
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